Приложение 1 к РПД Структуры и алгоритмы обработки данных 09.03.01 Информатика и вычислительная техника Направленность (профиль) Виртуальные технологии и дизайн Форма обучения – очная Год набора – 2021

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.	Кафедра	Математики, физики и информационных технологий
2.	Направление подготовки	09.03.01 Информатика и вычислительная техника
3.	Направленность (профиль)	Виртуальные технологии и дизайн
4.	Дисциплина (модуль)	Б1.О.17.02 Структуры и алгоритмы обработки данных
5.	Форма обучения	очная
6.	Год набора	2021

І. Методические рекомендации

1.1 Методические рекомендации по организации работы студентов во время проведения лекционных занятий

- При подготовке и проведении занятий по дисциплине преподаватель должен руководствоваться как общими учебно-методическими установками (научность, системность, доступность, последовательность, преемственность, наличие единой внутренней логики курса, его связь с другими предметами), так и специфическими особенностями дисциплины.
- Главным звеном дидактического цикла обучения в освоении дисциплины является лекция.
- В ходе лекций преподаватель излагает и разъясняет основные, наиболее сложные понятия темы, а также связанные с ней теоретические и практические проблемы, дает рекомендации для практического занятия и указания для выполнения самостоятельной работы.
- В ходе лекционных занятий студенту необходимо вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание изучаемой дисциплины, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве.
- Желательно оставить в рабочих конспектах поля, на которых делать пометки, подчеркивающие особую важность тех или иных теоретических положений. Рекомендуется активно задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

1.2 Методические рекомендации по подготовке к семинарским (практическим) занятиям

- На практическом занятии студенты решают задачи под руководством преподавателя. Семинар проводится по узловым и наиболее сложным вопросам (темам, разделам) учебной программы
- Практические занятия посвящены изучению наиболее важных тем учебной дисциплины. Они служат для закрепления изученного материала, развития умений и навыков подготовки докладов, сообщений, приобретения опыта устных публичных выступлений, ведения дискуссии, аргументации и защиты выдвигаемых положений, а также для контроля преподавателем степени подготовленности студентов по изучаемой дисциплине.
- В ходе подготовки к семинарским (практическим) занятиям следует изучить основную и дополнительную литературу, учесть рекомендации преподавателя и требования рабочей программы.
- Можно подготовить свой конспект ответов по рассматриваемой тематике, подготовить тезисы для выступлений по всем учебным вопросам, выносимым на занятие. Следует продумать примеры с целью обеспечения тесной связи изучаемой теории с реальной практикой. Можно дополнить список рекомендованной литературы современными источниками, не представленными в списке рекомендованной литературы.

1.3 Методические рекомендации по организации самостоятельной работы обучающихся

Самостоятельная работа – планируемая учебная, учебно-исследовательская, научно-исследовательская работа студентов, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль за работой студентов).

- Самостоятельная работа студентов (далее СРС) в ВУЗе является важным видом учебной и научной деятельности студента. СРС играет значительную роль в рейтинговой технологии обучения. Обучение в ВУЗе включает в себя две, практически одинаковые по объему и взаимовлиянию части процесса обучения и процесса самообучения. Поэтому СРС должна стать эффективной и целенаправленной работой студента.
- К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной ситуации. Формирование такого умения происходит в течение всего периода обучения через участие студентов в практических занятиях, выполнение контрольных заданий и тестов, написание курсовых и выпускных квалификационных работ. При этом СРС играет решающую роль в ходе всего учебного процесса.
- В процессе самостоятельной работы студент приобретает навыки самоорганизации, самоконтроля, самоуправления, саморефлексии и становится активным самостоятельным субъектом учебной деятельности.
- Формы самостоятельной работы студентов разнообразны. Они включают в себя:
 - ✓ изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной, статистической, периодической и научной информации;
 - ✓ подготовку докладов и рефератов, написание курсовых и выпускных квалификационных работ;
 - У участие в работе студенческих конференций, комплексных научных исследованиях.
- Самостоятельная работа приобщает студентов к научному творчеству, поиску и решению актуальных современных проблем.
- Основной формой самостоятельной работы студента является изучение конспекта лекций, их дополнение, рекомендованной литературы, активное участие на практических и семинарских занятиях.

Чтение учебника

- Изучая материал по учебнику, следует переходить к следующему вопросу только после правильного понимания предыдущего, производя на бумаге все вычисления (в том числе и те, которые ради краткости опущены в учебнике) и выполняя имеющиеся в учебнике чертежи.
- Особое внимание следует обращать на определение основных понятий. Студент должен подробно разбирать примеры, которые поясняют такие определения, и уметь строить аналогичные примеры самостоятельно.
- Необходимо помнить, что каждая теорема состоит из предположений и утверждения. Все предположения должны обязательно использоваться в доказательстве. Нужно добиваться точного представления о том, в каком месте доказательства использовано каждое предположение теоремы. Полезно составлять схемы доказательств сложных теорем. Правильному пониманию многих теорем помогает разбор примеров математических объектов, обладающих и не обладающих свойствами, указанными в предположениях и утверждениях теорем.
- При изучении материала по учебнику полезно вести конспект, в который рекомендуется вписывать определения, формулировки теорем, формулы, уравнения и т. д. На полях конспекта следует отмечать вопросы, выделенные студентом для получения письменной или устной консультации преподавателя.
- Письменное оформление работы студента имеет исключительно важное значение. Записи в конспекте должны быть сделаны чисто, аккуратно и расположены в определенном порядке. Хорошее внешнее оформление конспекта по изученному материалу не только приучит студента к необходимому в работе порядку, но и позволит ему избежать многочисленных ошибок, которые происходят из-за небрежных, беспорядочных записей.
- Выводы, полученные в виде формул, рекомендуется в конспекте подчеркивать или обводить рамкой, чтобы при перечитывании конспекта они выделялись и лучше запоминались. Опыт показывает, что многим студентам помогает в работе составление листа, содержащего важнейшие и наиболее часто употребляемые формулы курса. Такой лист не только помогает запомнить формулы, но и может служить постоянным справочником для студента.

Решение задач

- Важным критерием усвоения теории является умение решать задачи на пройденный материал.
- При решении задач нужно обосновать каждый этап решения исходя из теоретических положений курса.
 Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший. Полезно до начала вычислений составить краткий план решения.
- Решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных. Чертежи можно выполнять от руки, но аккуратно и в соответствии с данными условиями. Если чертеж требует особо тщательного выполнения (например,

при графической проверке решения, полученного путем вычислений), то следует пользоваться линейкой, транспортиром, лекалом и указывать масштаб.

- Решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Затем в полученную формулу подставляют числовые значения (если они даны). В промежуточных вычислениях не следует вводить приближенные значения корней, числа я и т. п.
- Полученный ответ следует проверять способами, вытекающими из существа данной задачи. Если, например, решалась задача с конкретным физическим или геометрическим содержанием, то полезно, прежде всего, проверить размерность полученного ответа. Полезно также, если возможно, решить задачу несколькими способами и сравнить полученные результаты.
- Решение задач определенного типа нужно продолжать до приобретения твердых навыков в их решении.

Самопроверка

- После изучения определенной темы по учебнику и решения достаточного количества соответствующих задач студенту рекомендуется воспроизвести по памяти определения, выводы формул, формулировки и доказательства теорем. Вопросы для самопроверки, приведенные в настоящем пособии, даны с целью помочь студенту в повторении, закреплении и проверке прочности усвоения изученного материала. В случае необходимости надо еще раз внимательно разобраться в материале учебника, решить ряд задач.
- Иногда недостаточность усвоения того или иного вопроса выясняется только при изучении дальнейшего материала. В этом случае надо вернуться назад и повторить плохо усвоенный раздел.

1.4 Проведение занятий в интерактивной форме

- Интерактивное обучение представляет собой способ познания, осуществляемый в формах совместной деятельности обучающихся, т.е. все участники образовательного процесса взаимодействуют друг с другом, совместно решают поставленные проблемы, моделируют ситуации, обмениваются информацией, оценивают действие коллег и свое собственное поведение, погружаются в реальную атмосферу делового сотрудничества по разрешению проблем.
- Интерактивная форма обучения реализуется в виде проблемных лекций.
- Проблемная лекция. На этой лекции новое знание вводится через проблемность вопроса, задачи или ситуации. При этом процесс познания студентов в сотрудничестве и диалоге с преподавателем приближается к исследовательской деятельности. Содержание проблемы раскрывается путем организации поиска.

1.5 Методические рекомендации по решению задач

 Перед решением задачи должно быть полностью приведено ее условие. Само решение следует сопровождать необходимыми расчетами и пояснениями с указанием применяемых формул, анализом и выводами.

1.6 Методические указания по подготовке к устному опросу

- Подготовка к опросу проводится в ходе самостоятельной работы студентов и включает в себя повторение пройденного материала по вопросам предстоящего опроса. Помимо основного материала студент должен изучить дополнительную рекомендованную литературу и информацию по теме, в том числе с использованием Интернет-ресурсов. В среднем, подготовка к устному опросу по одному семинарскому занятию занимает от 2 до 3 часов в зависимости от сложности темы и особенностей организации студентом своей самостоятельной работы. Опрос предполагает устный ответ студента на один основной и несколько дополнительных вопросов преподавателя. Ответ студента должен представлять собой развёрнутое, связанное, логически выстроенное сообщение.
- При выставлении оценки преподаватель учитывает правильность ответа по содержанию, его последовательность, самостоятельность суждений и выводов, умение связывать теоретические положения с практикой, в том числе и с будущей профессиональной деятельностью.

1.7 Методические указания к выполнению лабораторной работы

- Лабораторные сочетают элементы теоретического исследования и практической работы. Выполняя лабораторные работы, студенты лучше усваивают программный материал, так как многие определения, казавшиеся отвлеченными, становятся вполне конкретными, происходит соприкосновение теории с практикой, что в целом содействует пониманию сложных вопросов науки и становлению студентов как будущих специалистов.
- Выполнение лабораторных работ направлено на:
 - обобщение, систематизацию, углубление теоретических знаний по конкретным темам учебной лисшиплины;
 - **у** формирование умений применять полученные знания в практической деятельности;

- > развитие аналитических, проектировочных, конструктивных умений;
- > выработку самостоятельности, ответственности и творческой инициативы.
- Лабораторные занятия как вид учебной деятельности должны проводиться в специально оборудованных лабораториях, где выполняются лабораторные работы (задания).
- Форма организации учащихся для проведения лабораторного занятия фронтальная, групповая и индивидуальная определяется преподавателем, исходя из темы, цели, порядка выполнения работы.

1.8 Методические рекомендации по подготовке к сдаче экзамена

- Экзамен осуществляется в рамках завершения изучения дисциплины (модуля) и позволяет определить качество усвоения изученного материала, а также степень сформированности компетенций.
- Студенты обязаны сдавать экзамен в строгом соответствии с утвержденными учебными планами, разработанными согласно образовательным стандартам высшего образования.
- По дисциплине «Структуры и алгоритмы обработки данных» экзамен принимается по билетам, экзаменационные билеты утверждаются на заседании кафедры.
- Экзаменатору предоставляется право задавать студентам вопросы в рамках билета, а также, помимо теоретических вопросов, предлагать задачи практико-ориентированной направленности по программе данного курса.
- При явке на экзамен студенты обязаны иметь при себе зачетную книжку, которую они предъявляют экзаменатору в начале экзамена.
- Рекомендуется при подготовке к экзамену опираться на следующий план:
 - 1. Просмотреть программу курса, с целью выявления наиболее проблемных тем, вопросов, которые могут вызвать трудности при подготовке к экзамену.
 - 2. Темы необходимо изучать последовательно, внимательно обращая внимание на описание вопросов, которые раскрывают ее содержание. Начинать необходимо с первой темы.
 - 3. После работы над первой темой необходимо ответить на вопросы для самоконтроля и решить тестовые задания к ней. При этом для эффективного закрепления информации прорешать тест первый раз лучше без использования учебных материалов и нормативно-правовых актов, второй раз с их использованием.
 - 4. И так далее по остальным темам.

II. Планы практических и лабораторных занятий

Практическое занятие №1. Структуры данных.

План:

- 1. Массивы.
- 2. Реализация списков.
- 3. Стеки и деки, реализация с помощью массивов и структур с указателями.
- 4. Очереди, реализация с помощью массивов и указателей.
- 5. Деревья, двоичные деревья.
- 6. Множества, их реализация посредством двоичных векторов и связанных списков.

Литература [1, 2, 3].

Практическое занятие № 2. Методы сортировки и поиска.

План:

- 1. Базовые идеи алгоритмов сортировки.
- 2. Сортировка вставками.
- 3. Сортировка вставками с уменьшающимся расстоянием.
- 4. Сортировка Шелла. Сортировка выбором.
- 5. Простая сортировка обменами (пузырьковая).
- 6. Быстрая сортировка.
- 7. Задача поиска элемента по заданному ключу.
- 8. Последовательный поиск в линейном списке.
- 9. Поиск в отсортированном массиве.
- 10. Поиск, включение и удаление элемента в дереве.
- 11. Хеширование.

Литература [1, 2, 3].

Практическое занятие № 3. Алгоритмы обработки данных.

План:

- 1. Полиномиальные алгоритмы.
- 2. Задачи классов Р и NP. NP-полные задачи.

- 3. Жадные алгоритмы поиск оптимального остовного дерева, кодирование Хаффмена, поиск кратчайшего пути в графе.
- 4. Псевдополиномиальные алгоритмы задача о рюкзаке, задача коммивояжера.
- 5. Алгоритм быстрого дискретного преобразования Фурье.
- 6. Перемножение длинных чисел.

Литература [1, 2, 3].

Лабораторная работа 1. Линейные структуры данных

План:

- 1. Статические массивы.
- 2. Динамические массивы. .
- 3. Стеки, деки, очереди.

Лабораторная работа 2 Нелинейные структуры данных

План

- 1. Бинарные деревья.
- 2. Множества.

Лабораторная работа 3. Сортировка данных

План:

- 1. Пузырьковая сортировка.
- 2. Сортировка вставками..
- 3. Сортировка Шелла.
- 4. Быстрая сортировка.

Лабораторная работа 4. Поиск данных в линейных структурах

План:

- 1. Последовательный поиск в линейном списке.
- 2. Поиск в отсортированном массиве.
- 4. Хеширование.

Лабораторная работа 5. Поиск данных в нелинейных структурах

План:

- 1. Поиск, включение и удаление элемента в дереве.
- 2. Сбалансированное дерево поиска.

Лабораторная работа 6. Жадные алгоритмы

План:

- 1. Поиск оптимального остовного дерева.
- 2. Поиск кратчайшего пути в графе.

Лабораторная работа 7. Псевдополиномиальные алгоритмы

План:

- 1. Непрерывная задача о рюкзаке.
- 2. Дискретная задача о рюкзаке.

Лабораторная работа 8. Дискретное преобразование Фурье

Ппан:

- 1. Алгоритм быстрого преобразования Фурье.
- 2. Перемножение длинных чисел.